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Abstract: Indoor farming of basil (Ocimum basilicum L.) under artificial lighting to support year-round
produce demand is an area of increasing interest. Literature data indicate that diverse light regimes
differently affect downstream metabolic pathways which influence basil growth, development and
metabolism. In this study, basil was grown from seedlings to fully developed plants in a microcosm,
an innovative device aimed at growing plants indoor as in natural conditions. Specifically, the effects
of white (W) and blue-red (BR) light under a photosynthetic photon flux density of 255 µmol m−2 s−1

on plant growth, photochemistry, soluble nutrient concentration and secondary metabolism were
investigated. Plants grew taller (41.8 ± 5.0 vs. 28.4 ± 2.5 cm) and produced greater biomass
(150.3 ± 24.2/14.7 ± 2.0 g vs. 116.2 ± 28.3/12.3 ± 2.5 g fresh/dry biomass) under W light compared
to BR light. The two lighting conditions differently influenced the soluble nutrient concentration and
the translocation rate. No photosynthetic stress was observed under the two lighting regimes, but
leaves grown under W light displayed higher levels of maximum quantum yield of PSII and electron
transport rate. Sharp differences in metabolic patterns under the two lighting regimes were detected
with higher concentrations of phenolic compounds under the BR light.

Keywords: LED lighting; indoor farming; plant nutrients; plant metabolomics; Chl α fluorescence;
precision agriculture

1. Introduction

In recent times, indoor farming, after the initial interest in space colonization by
humans [1], has met increasing interest among farmers as a practical and effective approach
to support year-round produce demand in urban environments, and also to face the
adverse effects of climate change on conventional agricultural systems [2–7]. So far, the
development of indoor farming technology has been mainly based on progress in artificial
lighting and environmental controlling/sensing, which enable farmers to grow plants
under totally controlled environments. Plant lighting based on light emitting diodes (LEDs)
is probably the most relevant technological progress in this field, thanks to several traits,
including smaller lamp sizes, lower heat emissions, greater photonic emission efficiency,
quicker reaching the stationary radiant flux, longer life span and easier connection to
digital control systems compared to conventional light sources [8–13]. LED technology also
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enables researchers to supply plants with selected wavelengths, allowing more accurate
investigation of the effects of unconventional light regimes on yield levels and biomass
quality. Scientific literature suggests that, in the future, indoor farmers could modify light
regimes to drive plant growth, development and metabolism to better meet consumer
needs [14–22].

Basil (Ocimum basilicum L.; Fam. Lamiaceae) has been used as a culinary herb since
prehistoric times, and today it is considered a highly valued horticultural crop world-
wide. It also holds a prominent position as a medicinal plant, owing to a high content of
biologically active compounds, including well-recognized antimicrobial and antioxidant
compounds [23,24]. Small dimensions, high growth rate and short cultivation cycle make
basil an interesting crop for indoor farming which can support year-round demand for basil
as a fresh and dry herb, pesto sauce, extracts and essential oil. The scientific literature has
clearly demonstrated that different lighting regimes affect downstream metabolic pathways
which influence basil growth, development and metabolism, allowing one to tune basil
metabolism by modulating light quality and intensity [14,21–58]. Unravelling the huge
amount of experimental literature results is, however, a very challenging task, as they were
generated from research approaches which differ in many aspects, including experimental
design and set-up, germplasm, plant developmental stages, duration of cultivation and
growing methods, in addition to light supply. Therefore, no universally accepted lighting
protocols for indoor basil farming are currently available, which is also due to the very few
experiments on long-lasting cultivations, as in real crop conditions.

Currently, the approach in indoor farming is widely based on soilless technologies,
such as hydroponics, aeroponics and, more recently, aquaponics. In this context, a new
concept, known as “microcosm”, aimed at growing plants indoors as in natural conditions
has been recently developed (European patent n. 3236741). Briefly, a microcosm device is
made up of two chambers, one for housing the epigeal plant part and another for housing
the roots. In both chambers, temperature, light and air-flow regimes can be independently
set and controlled, enabling the operators to grow roots and aerial parts of the plants under
different environmental conditions. Plant roots are grown in deep cylindrical pots with the
bottoms replaced by grid funnels to prevent limitations to root deepening. The height of the
two chambers allows basil-like plants to reach a shoot height/root depth ratio of about 1.5,
permitting natural development of the aerial part. In previous work, basil was grown in a
microcosm from seedlings to the flowering stage to evaluate the efficacy of this technology
on yield, photochemistry, soluble nutrients concentration and secondary metabolism. The
results confirmed that the new growing approach is suitable for indoor basil growing and
for long lasting cultivation, as plants presented a biomass yield and quality similar to those
achievable in typical open-field or greenhouse crops [33], as previously demonstrated in
potato (Solanum tuberosum L.) [59].

The subsequent technological evolution of the microcosm enabled researchers to
achieve a more accurate regulation of the light supply in the epigeal chamber, to balance
wavelength ratios and light intensity, compared to the basic prototype previously tested [33].
Thanks to this improvement, as a contribution to assess the most suitable lighting protocols
for indoor basil farming, in the present study, basil plants were grown in parallel in two
microcosms. In one device, basil was cultivated under white (W) light, while in the other
microcosm plants were raised under blue-red (BR) light. Both W and BR light displayed the
same photosynthetic photon flux density (PPFD) of 255 µmol·m−2·s−1. Basil was grown
from the seedling stage until the beginning of flowering to simulate cultivations targeted
to the production of herbs or pesto ingredient, in which exploitation of all the potential
of leaf and stem production is requested by farmers. The effects of the two light spectra
were assessed by measuring the biomass yield, as this is the first feature the farmers are
interested in, and detecting the soluble nutrient and secondary metabolite contents, as
these features affect the global quality of the final product. Since biomass yield and quality
are both related to metabolic pathways driven by photosynthesis, the response of the
photosynthetic apparatus to the different lighting conditions was also tested.
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2. Results

2.1. Plant Growth and Development

Basil plants grew healthy and vigorously in the two microcosms for the whole cul-
tivation period. They reached their maximum height at the beginning of the flowering
stage, i.e., at the emission of the inflorescence axes (Figure 1), which occurred 58 days after
the transplant.

ff

ff

ff

 

 

Figure 1. Basil plants in the microcosms under W (A) and BR (B) light at the harvest stage.

The two lighting conditions differently affected the plant height at the harvest stage
differently. Specifically, the plants grown under the W light were taller than those under
the BR light (average height cm 41.8 ± 5.0 and 28.4 ± 2.5, respectively) (Figure 2). The
average number of leaves per plant was also significantly higher in the plants grown under
the W light compared to the BR light (200.5 ± 15.4 and 146.4 ± 30.4, respectively) (Figure 3).
The average fresh and dry weights of aerial organs are reported in Figure 4. The average
total fresh weights of the aerial parts under W and BR light were about 150.3 ± 24.2 g and
116.2 ± 28.3 g, respectively, whereas the corresponding dry weights were about 14.7 ± 2.0 g
and 12.3 ± 2.5 g, respectively.
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Figure 4. Average fresh (f, upper) and dry (d, lower) weights of leaves (L), stems (S) and flowers (F)
and average weights of the total aerial biomasses (T) of plants grown under W and BR light determined
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2.2. Chlorophyll Fluorescence Analysis

The maximum photochemical efficiency (Fv/Fm) and the electron transport rate (ETR)
were measured on middle fully expanded leaves 28 days after transplant, and the results
are shown in Figures 5 and 6, respectively.
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No significant differences were detected.

The Fv/Fm ratio reflects the maximum quantum efficiency of PSII. The recorded mean
Fv/Fm values ranged between 0.770 and 0.785, indicating no detectable photosynthetic
stress in plants under both lighting regimes. As the light induction curves showed, basil
grown under the W light displayed a higher electron transport rate (ETR) as compared to
BR, where the maximum ETR values were reached at 997 µmol·m−2·s−1 of actinic light.

2.3. Nutrient Concentration

Table 1 reports the concentrations of the soluble fractions of several main nutrients
plus Na+ and Cl− ions, determined at the harvest stage in the stems and leaves of plants
grown under the two lighting regimes.

All the ionic species considered in this study displayed a similar distribution pattern
between leaves and stems under both W and BR light, with higher concentrations in leaves,
except for the Na+ ions. Total ions were particularly elevated in plants grown under W
light, especially in stems. The leaves/stems concentrations ratios ranged from 0.01 (Na+) to
1.92 (Mg2+) and from 0.01 (Na+) to 3.00 (Mg2+) under W and BR light, respectively.
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Table 1. Average concentrations (mg·g−1) ± SE (n = 3 replicates) of the soluble fractions of the main nutrients plus Na+ and Cl− ions in leaves and stems of basil
plants grown under W and BR light. p values are shown; not significant and significant differences at p ≤ 0.01 or 0.001 are reported as ns, ** and ***, respectively.

Ion Concentrations (mg g−1)

N NH4
+ NO3

− P PO4
3− K+ Mg++ Ca++ S SO4

2− Na+ Cl− ∑ions

Leaves W 6.21 ± 0.04 1.17 ± 0.04 23.47 ± 0.04 2.071 ± 0.009 6.35 ± 0.03 49.58 ± 0.03 3.72 ± 0.03 3.49 ± 0.02 1.33 ± 0.00 4.00 ± 0.01 0.01 ± 0.01 12.01 ± 0.01 113.37 ± 0.25
BR 5.95 ± 0.02 1.57 ± 0.02 20.96 ± 0.02 2.619 ± 0.004 8.03 ± 0.01 46.54 ± 0.02 4.34 ± 0.02 4.93 ± 0.03 1.49 ± 0.01 4.48 ± 0.02 0.01 ± 0.01 11.37 ± 0.02 112.30 ± 0.20

Stems W 4.12 ± 0.05 0.87 ± 0.05 15.25 ± 0.02 1.451 ± 0.006 4.45 ± 0.02 39.28 ± 0.01 1.94 ± 0.02 2.17 ± 0.02 0.76 ± 0.00 2.29 ± 0.01 1.72 ± 0.02 6.94 ± 0.01 81.25 ± 0.24
BR 3.01 ± 0.00 0.80 ± 0.00 10.58 ± 0.01 1.414 ± 0.007 4.33 ± 0.02 28.68 ± 0.01 1.45 ± 0.01 1.76 ± 0.01 0.88 ± 0.00 2.64 ± 0.01 0.92 ± 0.02 4.61 ± 0.02 61.09 ± 0.12

Leaves/Stems ratio W 1.51 1.34 1.54 1.428 1.43 1.26 1.92 1.59 1.74 1.74 0.01 1.73 1.39
BR 1.98 1.95 1.98 1.853 1.85 1.62 3 2.8 1.7 1.7 0.01 2.46 1.84

Significance N NH4
+ NO3

− P PO4
3− K+ Mg++ Ca++ S SO4

2− Na+ Cl− ∑ions
Leaves 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.895 ns 0.00 ** 0.006 **
Stems 0.00 ** 0.107 ** 0.00 ** 0.002 ** 0.002 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.002 **

Leaves/Stems ratio 0.00 ** 0.001 *** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.003 ** 0.527 ns 0.00 ** 0.00 **
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2.4. Metabolic Profiling

The metabolic patterns of hydroalcoholic extracts achieved from the apical (A) and
middle (M) leaves grown under BR and W light obtained by LC-ESI-FT-(Orbitrap)-MS
analysis in negative ionization mode are reported in Figure 7.
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microcosm BR; WA, apical leaves of plants from microcosm W; WM, middle leaves of plants from
microcosm W.

High-resolution mass spectrometry analysis followed by MS/MS fragmentation ex-
periments allowed detection of 30 main compounds, mainly belonging to flavonoids,
phenylpropanoids, organic acids and catechin, in addition to stilbenes and two triterpenic
acids (Table 2).

Table 2. Compounds identified by LC-ESI-Orbitrap-MS and MS/MS analyses in negative ion mode
numbered in order of elution.

N. RT [M-H]− Molecular Formula ∆ ppm MS/MS Identity

1 2.37 227.0611 C7H13O8 2.6 179 caffeic acid + formiate adduct
2 3.86 263.0043 C8H7O10 4.7 244 sugar
3 3.86 355.1237 C13H23O11 1.9 193 sugar
4 10.20 593.1497 C27H29O15 0.5 353/473 vicenin 2
5 12.47 197.0454 C9H9O5 3.09 153/129 syringic acid
6 12.56 463.0868 C21H19O12 0.5 301 quercetin 3-O-glucoside
7 12.81 300.9982 C14H5O8 1.01 283/257/233/227 ellagic acid
8 13.22 473.0718 C22H17O12 chicoric acid
9 13.80 353.0872 C16H17O9 1.4 - cholorogenic acid
10 13.85 665.3887 C36H57O11 621/431 triterpene

11 13.96 311.1130 C15H19O7 183/267/293 1-O-β-d-glucopyranosyloxy-2-hydroxy-4-
allylbenzene

12 14.39 475.0869 C22H19O12 −0.3 285 luteolin 7-O-glucuronide-6′-methyl ester
13 14.61 359.0760 C18H15O8 1.02 161 rosmarinic acid
14 15.09 738.3691 C37H56O14N 0.7 648/283 unknown
15
16

15.64
15.80

459.0923
327.0868

C22H19O11
C18H15O6

0.35
1.5

269
185/199/283/309 apigenin 7-O-glucuronide methyl ester

17 15.93 193.0505 C10H9O4 5.04 161/134/178 ferulic acid
18 16.00 565.1550 C26H29O14 0.1 367/197 unknown
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Table 2. Cont.

N. RT [M-H]− Molecular Formula ∆ ppm MS/MS Identity

19 16.40 227.0708 C14H11O3 17 resveratrol
20 17.48 373.0922 C19H17O8 1.4 179/135 rosmarinic acid methyl ester
21 18.74 327.0868 C18H15O6 1.5 185/199/283/309 salvigenin
22 18.74 565.1343 C29H25O12 0.72 533/353 unknown
23 19.14 311.1680 C13 H27 O8 0.82 183 unknown
24 19.28 357.0971 C19H17O7 0.6 339/313/289 gardenin b
25 20.00 501.1026 C24H21O12 339/161 di-feruloyl-tartaric acid
26 20.88 289.0687 C15H13O6 −6.9 catechin
27 28.30 291.1989 C15H31O3S 1.6 198 sulfurous acid
28 29.20 309.1734 C14H29O5S 1.7 96 ethanol, 2-(dodecyloxy), 1-(hydrogen sulfate)
29 30.91 455.3515 C30H47O3 −0.15 283/193 oleanolic acid
30 37.60 455.3517 C30H47O3 −0.15 283/199 ursolic acid

The LC-ESI/LTQOrbitrap/MS data were subjected to multivariate analysis using
PLS-DA as a projection method, and the score scatter plot is reported in Figure 8A. The
first component expressed 31% of the variance, whereas the second component accounted
for 14% of the variance, allowing discrimination of the samples in two main clusters. The
metabolites detected in plants grown under the W light were mainly distributed in the right
part of the plot, while those observed in basil grown under the BR light were mostly spread
in the left part of the plot. Due to the large number of variables, no marker compounds
could be selected in the loading plot obtained from the untargeted PLS-DA analysis, as
shown in Figure 8B.
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To identify marker metabolites useful to discriminate samples from plants grown
under the two different lighting regimes, a pseudo-targeted approach was developed by
building a new data matrix considering and manually measuring the areas of the peaks of
the compounds listed in Table 2. This matrix was then submitted to multivariate analysis by
the SIMCA-P+ software using both PCA and PLS-DA. The score scatter plot of the targeted
PLS-DA analysis (Figure 9A) allowed to differentiate the samples into two groups, one
from the plants grown under the W light (WA and WM), positioned in the left quadrants,
and one from the plants grown under the BR light (BRA and BRM), positioned in the right
quadrants, confirming the results of the untargeted analysis. An additional separation was
obtained between the BRA samples that were positioned in the upper right side of the plot
and the BRM samples that were placed in the lower right part. The results from the loading
plot analysis (Figure 9B) indicated that the phenolic compounds were more expressed in
BRA and BRM samples.
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3. Discussion

The experimental set-up used in this study was suitable to investigate the effect
of different lighting regimes on fully expanded basil plants, which represents the less
investigated plant model in the field of plant-light interaction compared to smaller plants
and microgreens. An experimental design based on W vs BR light under the same PPFD
level was chosen as a first test of the effect of different light spectra on basil yield and quality.
Biometric determinations indicated that the average dry biomass of all the aerial organs
was higher in plants grown under W light. This finding disagrees with the results reported
by other authors, who indicated better growth performance in basil microgreens and in
basil grown in small pots under selected wavelengths or blue-red light. Different results can
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be due to different basil genotypes and different lighting conditions (for example, B:R ratios,
PPFD levels, photoperiod, etc.) as well as to different plant developmental stages and
canopy widths [26,37,42]. In particular, the greater growth of basil under W light observed
in the present study can also be related to the better attitude of the white light to reach the
lower and inner parts of the plants compared to the blue and red wavelengths alone [60].
Chlorophyll fluorescence analysis was carried out on middle fully expanded leaves at
about half of the expected vegetative growing period (4 weeks after transplant), in order
to evaluate the effect of the lighting regimes on photosynthetic systems when plants were
still in the active growing period [61]. The recorded Fv/Fm values indicated that neither W
nor BR lights caused any photosynthetic stress to the plants, while the W light resulted in
elevated electron transport, in line with previous results about the effect of different light
spectra on PSII quantum efficiency [21,62–64]. The concentrations of the soluble fractions
of several main nutrients detected in the plants at the end of the growing period agree
with the values already reported in basil by Yang and Kim [65]. The greater amount of the
total ions in plants grown under W light, especially in stems, is consistent with the higher
biomass production displayed by these plants. The soluble nutrient concentrations were
influenced by the lighting conditions, except for Na+ in the leaves. Markedly, the plants
grown under W light accumulated higher levels of NO3

−, K+ and Cl−, and lower levels of
NH4

+, P, PO4
3−, Mg2+, Ca2+, S, SO4

2−. The leaf-to-stem concentration ratios were higher
under the BR light for all the tested elements, except for S and SO4

2−, thus suggesting an
enhancing effect of the BR light on the translocation rate.

The importance of a metabolomics approach to evaluate the plant response to envi-
ronmental factors is receiving increasing acknowledgement by the scientific literature [57].
Specifically, the metabolomics of fully expanded plants is less investigated compared to
smaller plants and microgreens. To investigate the effect of the W and BR light on the
secondary metabolism of the fully expanded basil plants, a metabolomics approach based
on LC-ESI-Orbitrap-MS combined with a multivariate data analysis was followed. As
expected, different metabolic profiles in middle and apical leaves collected from plants
grown under W and BR light were recorded. Sharp differences were observed in the
metabolite distribution following the multivariate analysis, confirming that the two lighting
regimes differently affected the secondary metabolism in basil. In this study, an untargeted
metabolomics approach was chosen, as it enables the identification of key changes in
metabolic pathways and helps to reveal important and putative novel metabolites or path-
ways for the implementation of further analyses. Notwithstanding the great progress that
has been made in this field over the past decade, plant metabolomics with an untargeted
approach still seems to be a valuable approach as it can generate comprehensive informa-
tion regardless of the high complexity of plant metabolites [66–69]. Among the compounds
responsible for the separation of the samples obtained from plants grown under BR light,
several molecules with peculiar biological and pharmacological properties were identified.
In particular, antioxidant activity and beneficial effects on spermatogenesis were described
for ellagic acid (Table 2, compound 7) and chlorogenic acid (Table 2, compound 9) [70],
antioxidant, anti-inflammatory, antiviral and immune-stimulating properties were reported
for chicoric acid (Table 2, compound 8) [71], already detected in different basil organs [72]
and antiviral, antimicrobial and anti-inflammatory activities were observed for rosmarinic
acid (Table 2, compound 13) [53]. Higher levels of these compounds were detected in plants
grown under BR light, thus suggesting that the BR light can promote the production of
phenolic compounds associated with interesting biological activities.

4. Materials and Methods

4.1. Germplasm and Growing Conditions

Seedlings of basil type Genovese cv. “Bonsai” (Blumen Vegetable Seeds, Milano, Italy),
a rather common Italian variety of basil variety characterized by compact growing habit and
heavily cup-shaped leaves, were transplanted in two microcosm devices, each one equipped
with 6 cylindrical pots (60 cm height × 20 cm diameter; 25 cm spaced out from each other)
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and set up as described in d’Aquino et al. [33]. In each cylindrical pot previously filled with
commercial potting soil (60% blond peat, 20% brown peat, 20% pumice 3–6 mm, pH 6.5),
three seedlings were jointly transplanted. Environmental conditions were 20–26 ◦C (night–
day) with 60% relative humidity and 18–22 ◦C (night–day) in the epigeal and hypogeal
chambers, respectively. Each microcosm was equipped with 6 square lamps, specifically
designed and supplied by Becar S.r.l. (Beghelli group), carrying different LED arrays and
enabling fine regulation of light spectra and PPFD. In the ‘microcosm white’ (W) only
LEDs Luxeon SunPlus 20 Cool White (Lumileds, Schiphol, The Netherlands) and Oslon®

SSL 80 Cool White (Osram Opto Semiconductor, Regensburg, Germany) were activated,
whereas in the ‘microcosm blue-red’ (BR) only LEDs, Royal Blue 445–455 nm and Deep Red
655–670 nm (Lumileds) and LEDs Oslon® SSL 80 Deep Blue 451 nm and HyperRed 660 nm
(Osram Opto Semiconductor) were activated. Figure 10 reports the spectral distributions
of the two lighting setups in the region λ 350 ÷ 800 nm at 87 cm distance from the light
source, i.e., at the seedlings level, determined using a spectroradiometer OL-770VIS (Gooch
and Housego, Ilminster, UK) equipped with an Optopolymer integrating sphere.
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The PPFD level was determined using a LI-190R Quantum Sensor and a LI-1500 Light
Sensor Logger (LI-COR Biosciences, Lincoln, NE, USA) and it was 255 µmol m−2 s−1 at
the seedling level in both the microcosms. The PPFD level under BR light was obtained
from about 224 µmol m−2 s−1 from red light and from about 32 µmol m−2 s−1 from blue
light (1:7). Photoperiodical conditions were 16/8 h light/dark. To prevent any external
effect on the light supplied in the epigeal chambers, appropriate shadowing of the two
microcosms was implemented. The plants were watered with 8.5 l water/pot, batching
the total amount along the entire cultivation period according to the biomass growth,
and fertilized twice with Fertiactyl GZ® (Timac) (0.5% and ammonium sulphate 1 g l−1)
during the growing cycle. To exploit the whole vegetative growth potential of plants,
the aerial parts were harvested 58 days after transplant, when all the plants were at the
beginning of the flowering stage, i.e., when the emission of inflorescence axis had started
and before the anthesis had occurred, to prevent hijacking of leaf and stem resources by the
reproductive organs.

4.2. Biometric Determinations

Plants (n = 3) in each pot were considered as one replicate. At the harvest stage
(58 days after the transplant), the plant heights and the number of leaves per plant were
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recorded. Leaves, stems and inflorescence axes were then collected, and fresh and dry
weights were determined. Samples from each pot were jointly collected. The analysis was
performed on a total of 6 groups of plants per light treatment.

4.3. Chlorophyll Fluorescence Analysis

Photochemical parameters were measured on intact fully expanded leaves 28 days
after transplant using a Mini version of the Imaging-PAM fluorimeter (Heinz Walz GmbH,
Effeltrich, German), as described in d’Aquino et al. [33].

4.4. Ion Chromatography Analysis

Plant samples were allowed to dry in a ventilated environment at room temperature
until a constant weight had been reached. Dried plant organs (stem and leaves) previously
pooled from each pot were extensively grinded using a Retsch MM400 ball mill (Verder
Scientific, Pedrengo, Italy). Each sample (0.5 g) was treated with 20 mL of ultrapure water
in an ultrasonic bath twice for 30 min, to extract the soluble fraction; solutions were then
filtered with pre-syringe filters with a porosity of 0.2 µm. One ml of each solution was
then added to 100 µL of H2O2 and treated for 20 min in a 705 UV Digester (Metrohm,
Origgio, Italy) to digest the organic fraction. Finally, volumes were corrected to 10 mL
(dilution 1:10) with ultrapure water. The concentrations of major ions were determined
by ion chromatography (IC) using a Dionex ICS1100 system (Thermo Fisher Scientific,
Waltham, MA, USA). The detection of NO3

−, PO4
3−, SO4

2− and Cl− was performed using
an ASRS 300-4 mm suppressor with a current of 33 mA, a AS22 column working with a cell
volume of 100 µL and a buffer solution of 3.5 mM of sodium carbonate/bicarbonate as
eluent, at a flow rate of 1.20 mL/min. The detection of Na+, K+, NH4

+, Mg2+ and Ca2+

was performed using a CERS 500-4 mm suppressor with a current of 15 mA, a CS12A
column working with a cell volume of 25 µL and a 20 mM methane sulfonic acid solution
as eluent, at a flow rate of 0.25 mL/min. Calibration curves were calculated using certified
multistandard solutions. The detection of NH4

+, NO3
−, PO4

3−, SO4
2−, Ca2+, Mg2+, Na+

and Cl− was performed on dried samples, as already reported [33]. The contents of N, P
and S in relation to their corresponding inorganic soluble fractions were calculated using
the molar mass of the elements from the concentrations of their ionic chemical forms
(NO3

− + NH4
+, PO4

3− and SO4
2−, respectively).

4.5. Plant Extraction and Hyphenated Liquid Chromatography High-Resolution Mass
Spectrometry (LC-ESI-Orbitrap-MS) Analysis

Intact apical and middle leaves were independently collected from plants randomly
selected in the two microcosms. Dried plant leaves were ground using liquid nitrogen
and 150 mg of the powder was homogenized with 2 mL of a solution of ethanol and
water (1:1). Extracts were sonicated for 10 min and centrifuged at 3000 g. Supernatants
were dried under nitrogen flow and then diluted with 2 mL of methanol. To remove
chlorophyll, 1 mL of extract was subject to solid phase extraction using a Strata® SCX
55 µm, 70 Å cartridge (Phenomenex, Torrance, CA, USA) preconditioned with methanol.
Elution of samples was performed using 1 mL of methanol. The eluted samples were
evaporated under nitrogen flow and dissolved in methanol/water (1 mg/mL) and 10 µL
was injected in the LC-MS system. LC-MS analysis and molecule identification were carried
out as detailed by d’Aquino et al. [33]. For the fragmentation studies, a data-dependent
scan experiment was performed to select precursor ions corresponding to the most intense
peaks in LC-MS analysis. Xcalibur software version 2.1 was used for instrument control,
data acquisition and data analysis.

4.6. Data Analysis

Data from biometric determination, chlorophyll fluorescence measures and ion con-
centrations were analysed by one-way Anova using the SPSS 27 software package (www.
ibm.com/software/analytics/spss 20 November 2022). For the metabolomics analy-
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ses, multivariate data analysis was carried out as described by Sarais et al. [73]. Raw
LC-ESI/LTQOrbitrap/MS data were analysed by MZmine software (http://mzmine.
sourceforge.net/ 20 November 2022). The resulting data matrices from untargeted
(48 observations and 2500 variables) and pseudo-targeted (48 observations and 30 variables)
analyses were processed using Umetrics SIMCA-P+ software 12.0 using PCA (Principal
Component Analysis) for visualization and PLS-DA (Partial Least Square—Discriminant
Analysis) for classification.

5. Conclusions

In this study, higher biomass yield was recorded under W light compared to BR
light in fully expanded basil plants, possibly because the W light ensures a better reach
of inner and lower parts in plants in which the epigeal part displays a complex aerial
architecture, with many leaf layers and extensive lateral shooting. This finding should
be taken into consideration in indoor basil farming targeted to the production of fully
expanded plants, in which canopy complexity increases during the cultivation period,
and it is also emphasized by lateral shooting that occurs after successive harvesting of
leaves. Even if a definitive relationship between metabolic profiles and basil quality is yet
to be deciphered, the results from metabolomics analysis confirmed that the light spectrum
affects secondary metabolism in basil and provided novel information about the metabolic
profile of fully expanded basil plants. Several potentially bioactive phenolic compounds
were recorded at a higher level in plants grown under BR light and this finding strengthens
the hypothesis that light modulation can provide farmers with a tool to drive the basil
metabolic profile according to specific aims. The two tested lighting regimes also differently
affected translocation rate and leaf accumulation of minerals that are related to basil final
quality, particularly nitrate ions. Overall, our results suggest that W light can be preferred
in the early stages of basil cultivation to enhance biomass production, while BR light can be
supplied in the late cultivation period to decrease nitrate content and to increase the content
of beneficial mineral nutrients and phenolic compounds in the leaves. Nevertheless, further
investigations under microcosm conditions using additional wavelengths, different PPFD
levels and different photoperiodic conditions are needed to assess new lighting approaches
suitable to increase the yield and to drive secondary metabolism in basil.
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